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Errata Sheet
for

"Design Criteria for High-Speed Power-Transmission Shafts"

Part 1., Analysis of Critical Speed Effects and Damper
Support Location,

Technical Documentary Report No. ASD-TDR-62-728
Part 1, August 1962,

The first phase report of a research program titled '"Design Criteria

for High-Speed Power Transmission Shafts' was issued in December, 1962, This

report is titled "Part 1. Analysis of Critical Speed Effects and Damper

Support Location' and is designated as Technical Documentary Report No.

ASD-TDR-62-728, Part 1, It was prepared under Contract No, AF 33(616)-8290,

and was Project No, 8128, Task No., 812802, Since this report was issued, the

following Errata has been compiled.

(1)
2
(3)

)

(5)
(6

Page
Page

Page

Page

Page

Page

ERRATA

X1V, Line 11; Add X
XV, Line 3; Add k

10, Equation (14); should be

TP% ybe _ VD2 + d°

[oF . d4)1/3
D

rpmsolid

14, Equation (16); should be

_ T 2 2
WS 4 (D" - d°) Lp, 1b.
42, Figure 15; Change to Figure 16,

49, Figure 16; Change to Figure 15.




Errata Sheet

2=

(7) Page 73, Equation (103); should be
H=oa

(8) Page 95, Equation (11l); should be

(9) Page 137, Line 10; Change from rev/sec to revolutions per minute.
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FOREWORD

This report was prepared by Battelle Memorial Institute, Columbus, Ohio, on
Air Force Contract AF 33(616)-8290, under Task No, 812802 of Project No. 8128,
"Design Criteria for High-Speed Power-Transmission Shafts'. The work was adminis=-
tered under the direction of Flight Accessories Laboratory, Aeronautical Systems
Division. Mr. Bruce P. Brooks was project engineer for the laboratory.

The studies presented began in May, 1961, and were concluded in July, 1962.

Group Director John E. Voorhees was the engineer responsible for research activity of
Battelle Memorial Institute.

This report is the Final Technical Report of Phase I activities.

The contractor's
report number is G-4869.

This report is unclassified.




ABSTRACT

Repeated successful operation of high-speed power-transmission shafts at and far
above their first critical speeds hi.s been achieved. A basic new analytical technique:
for the design and analysis of high~speed shafting has been developed using electrical
transmis sion line theory. Limited experimental work has shown the technique to predict
successfully the damper parameters necessary to high~speed shait operation. Equations
relating full-scale and model shaft configurations to produce similar dynamic behavior
have been formulated. The experimental application of torque on high-speed shafting
did not change lateral critical speed. This is not in agreement with theory, which pre-
dicts a decrease in critical speed. Damping ccatings applied continuously along the
length of high-speed shafts controlled vibration amplitudes to a slight degree at the
lowest critical speeds. At higher order criticals the coatings had no desirable effects.
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density, lb/in. 3

ASD-TDR-62-728, Pt. 1] X111




LIST OF SYMBOLS

{Continued)
Q@ = constant
R = crank throw, in,.
Sq = shear stress, lb/in, 2
Sse = endurance limit stress in shear, lb/in, 2
sy = shear yield stress, 1b/in, 2

T = torque, in-1b
v = shear force, 1b
w = weight, 1b
Wy = characteristic shaft weight, 1b
X = support or node position

_ shaft length between support or node and shaft end, in.

over-all shaft length, in.

X = a function of length
Zg = characteristic shaft impedance
z* = polar section modulus = %, in, 3
a_ = centrifugal force constant, 1b/in.
b, = damping constant, lb/in.
C = critical speed proportionality constant
d = inside diameter, in.
e = eccentricity, in.
b = frequency, cps
fo = influence coefficient, 1/1b
g = acceleration of gravity, 386 in. /sec?
h = number of equal-length spans in a multisupported shaft
hC = deflection influence coefficient for shear force, in. /lb
1 = number of the vibration speed in the critical speed sequence where

shaft span lengths are equal

ASD-TDR-62-728, Pt. 1 Xiv




LIST OF SYMBOLS

(Continued)
i =J-1
k = geometric factor relating span lengths of multisupported shafts
- shaft length between most closely spaced supports, in.
shaft length between next most closely spaced siupports, in.

k = numerical index when used as a subscript
)/ = shaft length between supports, in.
EC = shaft length between computer stations, in.
m = mass, lb-secz/in.
m = mass per unit length of shaft, Ib-sec?/in. 2
n = number of principal mode of vibration
n, = critical speed proportionality constant where shaft span lengths are equal
Pc = support weight constant, 1b/in.
qc = slope influence coefficiert for a moment, 1/in-1b
r = number of ccmputer calculation stations
t = time, sec
v = velocity, in./sec
w = unit weight of shaft, lb/in.
x = position along shaft, in.
y = deflection, in.
Ye = shaker deflection, in.
a = torque function, dimensionless
[& = frequency function, dimensionless

ck = inertia force constant, lb/in.
A = wavelength, in,
[0} = slope of deflected shaft, rad
w = shaft critical speed, rad/sec

ASD-TDR-62-728, Pt. 1

XV




LIST OF SYMBOILS

(Continued)
W' = shaft critical speed with external load, rad/sec
wg = characteristic shaft natural frequency, rad/sec
o = angular windup in total shaft length, degrees
cpm = cycles per minute
cps = cycles per second
hp = horsepower
hp = characteristic shaft power transmission ability, horsepower
rpm = revolutions per minute
rps = revolutions per second
(VSWR) = Voltage Standing Wave Ratio

ASD-TDR- 62-728, Pt. 1 xvi




INTRODUCTION AND SUMMARY

In connection with the need for light-weight componerts in military helicopters
and STOL and VTOL aircraft, a research program sponsored by the Aeronautical
Systecmis Division has been conducted by Battelle to determine the meritsof hypercritical-
speed power~transmission shafts. The research program has produced considerable
information which confirms the feasibility of such shafts, and relates their design to
practical applications,

For any rotating shaft there exists a series of discrete speeds at which the cen-
trifugal force resulting from unbalance causes progressively greater shaft deflection.
The elastic restoring forces developed as the shaft deflects are overcome by the cen-
trifugal force developed by the deflected shaft. Extremely large deflections and even
destruction of the shaft and its bearings can result from operation at these speeds,
called critical speeds. ¥for this reason designers of power-transmission equipment
normally avoid the problem by operating shafts below their first critical speed.

There are of course, disadvantages to restricting operation to below the first
critical speed. For transmitting a given horsepower, torque and consequently shaft
size must be increased as operating speed is reduced. In case of long shafts, the shaft
size may be increased above that size required to transmit the torque simply to raise
the first critical speed above the operating speed range. Alternatively, the shaft size
may be determined by the torque loading, but additional bearings may be installed to
support the shaft and thereby raise its first critical speed. The major disadvantage of
these conventional practices applied to aircraft is the weight penalty.

The research program has shown that shafting can be operated consistently far
above its first critical speed, with consequent savings in shaft and support weight,
through the use of one or two damped supports, Methods have been developed to predict
necessary damping values and support locations to provide satisfactory operation at any
range of speed at and above the first critical. Methods are also included to relate the
parameters which provide good operation of one shaft to any other shaft, no matter what
the shaft dimensions or material. In short, hypercritical-speed shafting, with its
associated advantage in weight, is a very practical and feasible means of transmitting
power. With today's high-speed power sources it is especially attractive, since consid-

erable weight could be pared from engines and gearing by transmitting power at the same
speed as it is produced.

Manu:cript released h)'_lTu- authors July 1762 for publication as an ASD Tcchnical Docuimentary Report.
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TECHNICAL WORK

Relationships Between Power, Speed, Torque, Shaft Size, and
Critical Speed

Solid Shafts

The power-transmission properties of high-speed-shaft sizes studied in this re-

search program can be most easily visualized upon consideration of some basic
relationships.

Torque transmitted by a shaft is given by:
_mD3Sg
16

T (1)

where
T =torque, in-lb
S. = shear stress, psi
D = shaft diameter, in.

Horsepower transmitted by a shaft is given by:

hp - 27 T{rgm) , (Z)
12 x 33,000

where
hp = horsepower
(rpm) = revolutions per minute.

Substituting Equation (1) in Equation (2) gives

b Z"TZSS (rpm)D3 (3)
P=12XT16 x 33,000 ° :

This relationship may be further simplified if a given stress level is assumed.
For high-quality, heat-treated steel shafting the highest torsional endurance limit that

may be expected is around 50,000 psi. Substituting this value for Sg in Equation (3)
gives the following result:

hp = 0. 1557(rpm)D°> . (4)

In Figure | the above relationship between shaft diameter and speed is shown for
various horsepowers. It may be seen from this figure that relatively small-diameter
shafts will transmit large powers at high speeds. The area in the figure bounded by the
solid heavy line denotes the range of speed and shaft diameters for which the shaft test
machine was designed. By interpolating between the constant horsepower lines it is seen

that a 0. 5-inch-diameter shaft running at 50,000 rpm can transmit nearly 1000
horsepower,
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Transmitting large horsepowers with small-diameter shafts presents the problem
of controiling shaft vibration at the critical speeds. The shaft speed at which the first

principal mode of vibration or first critical speed would occur can be calculated from
the following equation [Ref, (W™

D% 4 1 _467D [E
5 = (60 52 1l 87 /8% - 60 x 1,57 [386E TD ENE 5 5
< x wl * 24 64 mDZP (2 NP ()

where
g = acceleration of gravity, 386 in. /sec?
E = modulus of elasticity, lb/in. % (30 x 108 for steel)
1 = section moment of inertia, in. 4
w = unit weight of shaft, lb/in.
4 = shaft Ie’ngfh between supports, in.
P = shaft density, 1b/in. 3 (0.283 for steel).

For a steel shaft, Equation {5) may be reduced to the following:

4,8 x 106D

22

rpm =

(6)

Equation (6) gives the first critical speed of a simply supported shaft or a contin-
uous shaft on equally spaced simple bearing supports for any shaft diameter and length.
Solutions of this equation for various spans between bearings are plotted in solid lines
on Figure 1. The second principal mode of vibration of the shaft would occur at a
speed four times that computed from Equation {(6). The third principal mode of vibra-
tion would occur at a speed nine times that computed using Equation (6), and the nth

principal mode of vibration would occur at a speed n

times the speed computed from
Equation (6).

It can be seen, therefore, that a whole family of curves for higher modes
of vibration would exist for each curve plotted in solid lines orn Figure 1. Besides the
curves representing the first principal mode of vibration, only the curves for the tenth
principal mode are shown in dotted lines to prevent confusion.

Referring to Figure 1, a 0, 5-inch-diameter shaft turning at 50,000 rpm would be

running at the tenth critical speed, if the span length between bearings were approxi-
mately 70 inches. As mentioned, nearly 1000 horsepower could be transmitted by such
a shaft. But without suitable means to damp lateral vibrations the shaft would be use-

less, unless ten or more intermediate supports were installed to decrease the span
length to below that of the first critical speed.

For a simply supported steel shaft, Equation (6) gives the first critical speed for
any shaft length and diameter. If n denotes the first, second, or nth mode of vibration,
the critical speed for any vibration mode can be found by the following:

* References are given on page 142,




4.8 x 10%02D
L2 ’

rpm =

(7)

Figure 2 is a graph of this equation with a family of curves of néD equal to various con-
stants, plotted against speed and shaft length, Figure 2 also shows the maximum length
and speed capabilities of the test machine as indicated within the dotted lines. From the
figure, a 70-inch 50,000-rpm shaft has an n’D constant of approximately 50, Then the
value of n for a 0., 5-inch-diameter shaft equals 10, meaning that the shaft is running at
its tenth critical speed. A number of intermediate supports could be added to reduce the
order of the vibration mode to one, or even less than one to completely avoid critical
speeds. The distance between supports to reduce operation to the first critical speed
for the 0, 5-inch shaft running at 50,000 rpm can be calculated easily. At the first
criticaln = ! and n®D = 0,5, On Figure 2 the intersection of the n“D curve equal to

0.5, and 50,000 rpm, shows the distance between supports to be about 7 inches., For
operation of the shaft below the first critical speed, ten or more supports must bc added
to reduce support spacing below 7 inches.

Figure 2 shows graphically another interesting relation between vibration mode and
diameter of simply supported shafts. Suppose the installation using a 70-inch-long shaft
running at 50,000 rpm had no framework on which to mount intermediate supports along
its length. A shaft diameter could be chosen to operate at or below the first critical
speed. From Figure 2 the value of nD for the 70-inch-long, 50,000-rpm shaft is 50,

If n is made equal to 1, then d must equal 50 inches. A diameter somewhat larger than
50 inches would permit operation below the first critical. Although this example is
ridiculous from a practical standpoint, it illustrates the application of Figure 2 in situa-
tions where the distance between driving and driven members is fixed.

Probably most of the situations to which high-speed power-transmission shafts
might be adapted would be those with considerable shaft-end fixity. Rather than bcing
freely supported, the shaft ends would be built-in or cantilevered. Due to the increascd
stiffness of such shafts, their critical speeds are higher than indicated by Equations (6)
and (7) and Figures 1 and 2.

The critical-speed equation for any fixed-end solid steel shaft, and for any vibra-
tion mode is:

3.07 (1. 25n + 0. 637)210D
—E—

rprn o — (8)

&

Equation (8) was derived from material in Reference 1. Dividing Equation (7) by Equa-
tion (8) produces the critical-speed ratio of simple to fixed-ended shafts for any vibra-
tion mode n, The critical-speed ratio is:
TPMgimple - 1. 57n%
TPMfixed  (1.25n + 0. 637)

= (9)

and is plotted in Figure 3 for the first 20 critical speceds.

At the higher criticals there is less difference in speed due to the decreasing
prominence of the two end vibration loops compared to the total number of loops along
the shaft, Referring to Figure 3 the critical-speed ratio for the tenth mode is about 0.9,
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‘The 0, 5-inch-diameter 70-inch-long steel shaft with simple ends vibrates at its tenth
(rilical when turning at 50,000 rpm. The same shaft with fixed ends must turn at
50,000/0.9 = 55,600 rpm to achieve the tenth critical speed. Figure 2 shows that the
same 0. 5-inch-diameter 70-inch-long shaft simply supported runs at its first critical
speed (nZD = 0. 5) at about 500 rpm. The critical-speed ratio from Fiéure 3 for the
first vibration mode is approximately 0. 44, Then the first critical speed of the same
shaft, but with clamped ends is 500/0, 44 = 1137 rpm.

Tubular Shafts

Tubular power-transmission chafts have some very attractive advantages when
compared to solid shafts. These advantages can be easily understood with the aid of
graphs which are developed in this section.

Equation (1) gives the torque transmission ability versus solid shaft diameter for

a certain torsional stress level., Equation (10) presents the same relationship for a
tubular shaft:

nS4(D% - a%)
B 16D

) (10)

where

D

shaft outside diameter, in,

d

shaft inside diameter, in.

If solid and tubular shafts are compared on the basis of transmitting equal torque which
develops the same stress levels at the surfaces of the shafts, Equations (1) and (10}

reduce to:

1/3

4 _ 44

DS =( ——-—-—-D d > ] (11)
\ D

where

Dg = diameter of a solid shaft which is torsionally of equal strength as a
tubular shaft of given dimensions, in.

Figure 4 shows a plot of Equation (11) which compares the outside-diameter ratio of
equally stressed solid and tubular shafts with equal torque capacity to the ratio of tubular
shaft inside to outside diameters. For instance the 0.5-inch-diameter solid steel shaft
was capable of transmitting nearly 1000 horsepower. If an equally stressed tube of

0. 8-inch outside diameter were substituted to carry the same power at the same speed,
the tube inside diameter could be easily calculated from Figure 4. The ratio of solid to
tubing outside diameter is 5/8, or 0. 625. From the curve the inside to outside tube-
diameter ratio is read to be about 0.93. Then a tube of 0. 744-inch bore and 0, 8-inch

outside diameter can handle the same torque at the same stress level as can the 0. 5-
inch solid shalft.

Equation (12) shows the relationship between critical speed and shaft length for
tubular steel shafts with simply supported ends:
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6 ——
rpm 5 B8 MT N Dé + al . (12)

Dividing Equation (12) by Equation (6) shows the critical-speed relation between tubular
and solid shafts for the same shaft length:

rpm tube ,/ DZ + d2

= . 13
T'PmM s5olid D (13)

Substituting Equation (11) produces the relation between tubular and solid-shaft critical
speeds for shafts which can transmit the same torque 2t the same stress level:

rpmiybe «/ D2 + a2
TPM 50lid -,;3/ D% - g4
D

. (14)

Equation (14) is plotted in Figure 5.

The 0. 5-inch solid shaft and the tube with 0. 8- and 0. 744-inch outside and inside
diameters both can transmit nearly 1000 horsepower at 50,000 rpm. The torsional
stress levels of both shafts are equal. Figure 5 shows that the critical-speed ratio of
the tube to the solid section is 2,218, In other words for the same vibration mode the
critical speed of the tube is 2. 218 times that of the solid shaft,

Previously i1t was seen that for the 0. 5-inch-diameter 70-inch-long solid steel
shaft the first critical speed was 500 rpm. The first critical speed of the equal-strength
tube = 2,218 x 500 = 1109 rpm. Obviously there is an advantage to the use of tubing
since fewer intermediate supports are needed. Reference to Figure 2 shows graphically

the advantage in number of intermediate supports needed when tubular rather than solid
shafts are used.

In Figure 2 the intersection of 70-inch span and 1109 rpm occurs at an n¢D value
slightly greater than l. 1. Actually the value of nD is 1. 113, which can be calculated
exactly from Equation (7). This value, when divided by n = 1, provides a solid shaft
diameter of 1. 13 inches which is equivalent from the critical-speed standpoint to the
0. 8-inch-diameter tube of the same length. Since the vibration speeds of the tube and
1. 13-inch~-diameter equivalent solid shaft are identical, the vibration mode of the tube
occurring at 50,000 rpm can be calculated easily from Figure 2. At this speed and with
a shaft length of 70 inches the n®D value is 50. Dividing 50 by the equivalent 1, 13 diam-
eter shows n to be equal to 6. 65. This means that the tube operates between the sixth
and seventh vibration modes. To determine the span between intermediate supports
necessary to permit operation of the tube at the first critical speed find the intersection
of the line equal to 1. 13 and 50,000 rpm. The span length £ for this point is 11 inches.
At 50,000 rpm the introduction of six intermediate supports permits operation of the
0. 8-inch-diameter 70-inch-long tube below its first mode of vibration, while it is neces-
sary to include ten intermediate supports along the 0, 5-inch-diameter 70-inch-long
solid shaft to provide operation below the first critical speed. Both the tube and solid
shaft can transmit the same horsepower at the same level of stress in the shafts.

10
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Another advantage of tubular shafts over their solid counterparts is the reduction
in shaft weight necessary to transmit the same level of power. Figure 6 shows the
curve of the following equation which permits calculation of the weight ratio of equal
strength tubes to solid shafts:

W tube D? - g2
Wsolid= 4 4 2/3 (15)
D
where
Wiube = weight of a unit length of tubular shaft, 1b

W s olid = Weight of a unit length of solid shaft, lb.

Checking Figure 6 for the ratio of inside to outside diameter of 0.93 we find a ratio of
tube to solid weight of about 0. 33. For similar torque~-transmission ability the tube
weighs one-third that of the solid shaft.

Tubular shafts may of course be run with fixed rather than simply supported ends.
The first critical speed of the 70-inch-long tube with simply supported ends was found
to be 1109 rpm with an n®D value of 1.13. Reference to Figure 3 shows the critical
speed of a simply supported shaft to be about 0. 44 that of a fixed-end beam. The first
critical speed of the tube with fixed ends is approximately 2520 rpm. Other fixed-end
critical speeds can be calculated in a similar manner,

When damped support bearings are provided to permit shaft operation through
several critical speeds, the tubular shaft will have to pass through fewer critical speeds
than an equivalent solid shaft in the same application. More effective damper design
should therefore be possible for use with tubular shafts, since fewer design compro-
mises would result from dealing with a smaller number of critical speeds.

Shaft Modeling Procedure

Numerous successful high-speed-shaft experiments have been made with damped
intermediate supports. For instance, with one damped support bearing included on a
0. 25-inch-diameter, 89. 3-inch-long steel shaft, successful vibration suppression was
obtained at all shaft critical speeds up to the twelfth mode. This is a remarkable ac-
complishment, but it must be possible to extract broader implications from this experi-
ment to permit the design of successful shafts of different materials, lengths, and

diameters. To make it possible to achieve similar performance with other shafts a set
of modeling equations is needed.

Modeling Equations Relating Dynamically
Similar Shafts

The following relationships between dynamic shaft parameters were developed to
define the basic properties of all circular shafts of uniform cross section:
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Characteristic Shaft Weight, Wg =%‘ (D2 - d)% LP, b, (16)

4 _ 44
Characteristic Shaft Lateral Stiffness, Kg = ETL(D_Lg_“_E, 1b/in. (17)
< s _ [Rsg
Characteristic Shaft Natural Frequency, w = , rad/sec (18)
s
. ; L . W_K .
Characteristic shaft Critical Damping Value, Cg = 2 S S, lb-sec/in. (19)
where

D = shaft outside diameter, in.
d = shaft inside diameter, in,
L = shaft over=-all length, in.
P = shaft density, 1b/in. 3
E = shaft modulus of elasticity, 1b/in.>
g = 386 in. /sec?
The following symbols refer to the intermediate support bearing:

W = weight of bearing plus 1/3 the weight of each support spring, 1b

K

combined spring rate of damper springs, 1b/in,

C

support damping coefficient, lb-sec/in.

X = distance between support and shaft end, in.
over-all shaft length, L, in.

Four dynamic scaling ratios exist which relate parameters of shafts and their
intermediate supports for similar dynamic behavior. Let subscript 1 refer to a shaft
configuration of known behavior, and subscript 2 refer to a shaft of different dimensions
which is to be dynamically similar to the first shaft.

W,y - W, (20)
Ws1 Wg2

L 3 (21)
sl s2

1. % (22)
Cs1 GCs2

X) = X,. (23)




Knowing the support-to-shaft ratios of Equations (20) through (23) for Shaft 1, all that
reinains is calculating the necessary damper characteristics W2, K, and C, for the
diameter, length, and materials of the second shaft,

To illustrate the modeling procedure let us say that a 114. 2-inch-long 0. 5-inch-
diameter aluminum tubular shaft of 20-gage wall thickness is needed to transmit power
between driving anc driven components. The shaft ends are to be clamped tightly in the
spindles of the driving and driven elements, and shaft speed is to be 30,000 rpm. Using
Equations {16) through (19) the characteristic aluminum-shaft parameters are:

W, = 0.572 1b
Kgz = 1. 848 1b/in.
Cgz = 0.1048 Yb-sec/in.
w = 35, 35 rad/sec.
s2

Now it is necessary to know if the vibration mode at the operating speed of the aluminum
shaft is within the range of successful vibration suppression of one of the damped test

shafts. This information can be obtained casily with a fifth relation given by Equa-
tion (24):

L s S (24)

where the subscripts are as before.

The 0. 25-inch-diameter, 89. 3-inch-long solid steel shaft with clamped ends and
one damped support has been successfully run to the twelfth vibration mode, which
occurs at approximately 22,000 rpm. The parameters of this shaft are as follows:

Wy = 1.260 Ib

1. 550 1b/in.

Ksl
Cq) = 0. 142 1b-sec/in.

w oy = 21. 8 rad/sec.

Substituting values in Equation (24):

@] _ 35.35 x 22,000 _
w1 21.8

Wy = wgo 35,700 rpm .

This calculation shows that the aluminum shaft could operate at speeds as high as
35,700 rpm without encountering severe vibrations, and that a speed of 30,000 rpm is
well within the range of good operation.

To establish the damped support characteristics of the aluminum shaft it is neces-

sary to know the support characteristics used with the 0. 25-inch-diameter steel shaft.
They are as follows:
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Wi = 0.609 Ib

Ky = 11.6 1b/in.

C; = 1.736 lb-sec/in.
X, = 0.05.

The aluminum-shaft support characteristics are calculated as follows from Equa-
tions (20) through (23):

w
w 1 _ 0.572 x 0,609

W2= SZWSI_ 1.260 =0.276 lb
K] 1.848 x 11. 6
; = L % _ 13.83 1b/in.
K2 = K2 g7 1. 550 83 1b/in
C
c,=cC 1 0.1048 x1.736 _ ) ,g8 1h-sec/in.

52 Cq) 0. 142

X2=X1=0.05

The aluminum tubular shaft equipped with one damper with the above calculated
parameters and located 5. 71 inches from a shaft end would transmit power satisfacto-
rily at 30,000 rpm.

Since damped shafts related to each other by the modeling Equations (20} through
(23) have similar vibration characteristics when operated at speeds defined by Ecua-
tion (24) they may be said to be dynamically similar. No matter how physically dis-
similar are the shafts, dynamic similarity car be achieved with the proper selection of
support parameters. The use of these modeling equations permits scaling the satisfac-

tory operational characteristics of a known shaft configuration to any physically dis-
similar situation.

Mcdeling Equations Relating Vibration Amplitude

If vibration amplitudes of a certain shaft configuration are known, then it is pos-
sible to predict vibration amplitudes of a dynamically similar second shaft configura-
tion. If both shafts have an exactly similar distribution of shaft runout, vibration
amplitudes for both will be proportional to their maximum shaft eccentricities when run
at dynamical similar speeds. This may be seen by defining the following shaft
parameter:

2

Characteristic Shaft Unbalance, Fg = ——S——g-—s— , b, (25)

where
e = maximum shaft runout or eccentricity, -in.

Shaft deflection, y, is proportional to the force, Fg, trying to deflect it, and inversely
proportional to the shaft stiffness, Kg. Then:
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Yy * — = (26)
s gKg ’
but
Ksg
2 s
w_ © = 9 (18)
s W
Jo Y < e, (27)
and
Yg1 Ys2 y1 V2
B s (28)

It must be remembered that Equation (28) is true only if Shafts 1 and 2 are modeled
accurding to Equations (20) through (24); the deflections, y) and y,, are measured at

the same relative position along each shaft; and the shaft runouts are exactly similar
in distribution.

Modeling Equations Relating Shaft Power
Transmission

Full-scale transmission shafts will be called upon to carry power in the range
from 250 to 2500 horsepower. Simulation of the effects of torsion in the laboratory
using much smaller horsepower levels is highly desirable, since the equipment neces-
sary to transmit low horsepower is less expensive.

The following defines the relative horsepower transmission ability of a circular
shaft of uniform cross section:

4 4
(D" = d7)Sgew

Characteristic Shaft Power-Transmission Ability, hp_ = )

(29)
where S = torsional endurance stress, psi. The following equation permits scaling
down of horsepower f.om full-scale to model values with the same percentage of
torsional operating stress to torsional yield stress maintained:

h h

Py %

hpsl hps&

where-hp; = the actual horsepower transmitted by the shaft.

(30)

As an example a steel tube of 1. 5-inch outside and 1. 372-inch inside diameter is
capable of transmitting 2500 horsepower at 17,000 rpm with a resulting torsional
operating stress of 50,000 psi. This can be calculated using Equations (19) and (26)
in the report section entitled, Relationships Between Power, Speed, Torque, Shaft Size,
and Critical Speed. If it were desired to test a model shaft at the same relative stress

level, application of Equation (30) would show the necessary value of model shaft
horsepower.
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Suppose it were convenient to test at 4,700 rpm a 0. 25-inch~diameter solid shaft
of the same material as the full-scale tubular shaft. The model shaft characteristic
horscpower transmission ability equals:

(0.25% - 0H)s, . x 4,700

hpg, = 535 =73.65S,, -
The full-scale shaft characteristic equéls:
(1.5% - 1.372%)S5e x 17,000
hpg = TE 2 =17,000 Sg, .
Applying Equation (30}
hoo = h hps2 2500 x 73. 6 Sge 10. 84 1
P2 = Pl hper 17,000 Sgo TP

Transmitting 10. 84 horsepower through the model shaft produces the same relative
torsional stress level as 2500 horsepower carried in the full-scale tubular shaft.

Experimental Modeling Tests

Seven tests were made in the laboratory using shafts with support characteristics
which fulfilied the requirements of Equations (16) through (19). Shafts were of steel,
aluminum, and brass, with various lengths and diameters. Two of the shafts tested
were tubes. The critical-speed ratio of the test shaft with the highest first critical
speed to the shaft with the lowest was 4. 75. The diameter ratio of the largest to the
smallest test shaft was 2. 67, and the ratio of the longest to the shortest length was

2. 62. In brief, the dimensions and critical speeds of the shafts tested were distinctly
dissimilar.

Figure 7 shows a plot of all the ratios of actual shaft critical speeds to charac-
teristic shaft speed plotted versus the order of the vibration mode., The test speeds all
fall within the solid-line envelope. As can be noted from the figure, the shaft critical
speeds determined experimentally show good agreement with each other.

Five of the seven shafts became excessively noisy or developed excessive vibra-
tion at the fourth critical, a fairly good experimental agreement. Accurate similarity
was not achieved in the amplitude versus vibration mode curves of the seven shafts,
Three reasons are responsible for this fact. The intermediate support has a nonlinear
moment-restraint versus shaft-angle curve. Second, some unavoidable inaccuracy
occurs in adjusting damping. But probably most important in preventing precise model-
ing procedure verification was the shaft straightness. The shafts were bought commer-
cially and were subject to bending in manufacture and in handling. The tubing was sub-
ject to an additional error in mass eccentricity, since the inside diameter was probably
not concentric with the outside diameter. Considering these variables we concluded that
similar dynamic behavior was obtained for a majority of the shafts. The critical speeds
were in good agreement in spite of the test variables, whichindicates that critical speeds
are not particularly sensitive to shaft runout, damping tolerance, or varied intermediatc
support moment restraint.
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Computed Modeling Tests

In order to eliminate the difficulties encountered in the experimental verification
of modeling, it was decided to use the computer. In the computer program, calculation
of shaft deflection is carried out using the exact same damping factor as indicated on
the input cards. The program dictates zero moment restraint at the intermediate
support bearing. And, of major importance, the shaft straightness or mass eccentric-
ity is controlled exactly and is also one of the computer inputs.

Two dimensionally dissimilar shafts were selected and the intermediate support
parameters adjusted to conform to the modeling equations. Table 1 shows the shaft
dimensions, support parameters, and values of the four modeling relations. Eccentric-
ity was the -same for both shafts. Referring to Equation (28), the ratio of vibration
amplitude to eccentricity, the amplitudes were predicted to be equal since the eccen-
tricities were equal. The computed amplitude of the large aluminum shaft was 0. 059
inch and for the small steel shaft 0. 060 inch at the same location. The mode shape of
both shafts was similar. These two computer calculations are indicated as Runs 35
and 36 on the tabulation of runs in the computer section.

TABLE 1. PARAMETERS OF THE TWO COMPUTER MODELING TESTS

Cs, Sq
Computer D, L, Ws, K, lb-sec, w, K, lb-sec/ W K <
Test in. in. Material 1b ib/in. in. b 1b/in. in. Ws K C,
33 0.25 89.3 Steel 1.260 1.550 0.142 0.701 66 0.868 0.556 42.6 6.11 21.8
36 2.218 174.1 Aluminum 68.3 432 17.4 31.9 18,300 106.3 0.556 42.6 6.11 49.4

Note: Both shafts calculated at the second critical; 2580 rpm for the steel shaft and 5850 rpm for the aluminum shaft. Eccen-
wicity, e, and support location, X= 0.416, were thc same for both shafts. Amplitudes were measured at the same posi-
tion for both shafts, and cqualed 0,060 in. for the steel shaft and 0.0592 in. for the aluminum shaft.

Conclusions

From the experimental tests it is safe to say that the modeling procedure relates
shaft and support parameters so that critical speeds for cther modeled shafts can be
predicted with accuracy. This in itself is reasonable proof that the modeling relations
are correct. From the computer calculations there can be no doubt that the relations

are correct, because mode shapes, amplitudes, and critical speeds can be predicted
accurately between modeled shafts.

Digital-Computer Calculation Procedure, and Computed Shaft
Speed and Deflection Results

Development of design criteria for high-speed power transmission shafts will rely
on analytical procedures for verifying design predictions. These analytical procedures
are adaptable to high-speed computation equipment, and adaptation of the problem for
solution by digital computer will be presented, as well as ‘wiil a discussion of the digital
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computer prog=ams. Shaft critical speeds and the deflection curves were computed for
various shaft configurations, and results are discussed.

Digital- Computer Calculation Procedure

The Vibrating-Shaft Equation. The problem of determining the vibration of elastic
bodies requires an infinite number of coordinates for specifying its position since it has
an infinite number of degrees of freedom. Consider a shaft mounted in rigid bearings
as shown in Figure 8. The first critical speed is determined by calculating the natural
frequency of lateral vibration for the equivalent fixed-end beam. The differential equa-
tion of the vibrating shaft is:

34y  PA 3%y 31
x4 = T 386. 4EI d3t2 (31

where
y = shaft lateral deflection, in.
x = distance along shaft, in.
t = unit of time, sec
P = shaft density, lb/in. 3
A = shaft cross-sectional area, in. 2
E = shaft modulus of elasticity, lb/in. 2
I = shaft moment of inertia, in4.

With the boundary conditions for the fixed-end shaft given in Equation (32) below:

y:Oand%:Oatx:O (32)
y=0and§X=Oatx=L,
dx

where
L = over-all shaft length, in.
the solution for the critical speed and deflection curve may be obtained. [Ref. (2})]

With introduction of an intermediate support having a damping coefficient and a
spring rate, as shown in Figure 9, Equation (31) is written for each span of the shaft.
In order to solve this equation, the boundary conditions at the intermediate support
must be written. The number of constants of integration to be evaluated is increased to
eight. It can be seen that for all but the most sirnple support systems the mathematical
work increases tremendously. The digital computer has been utilized in the solution of
the problem of vibration of high-speed shafts, by formulating the problem in a manner
adaptable to sclution by computer techniques.
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Digital-Computer Solution of the Vibrating-Shaft Equation. If the distributed-
mass system shown in Figure 9 is replaced by a lumped-parameter system of many
masses, as shown in Figure 10, the solution of the lumped-parameter system will
approximate that of the distributed-mass system. The larger the number of masses,
the better the approximation of the solution of the original problem.

In order to determine shaft behavior using the digital computer, the uniform shaft
was approximated by a large number of rnasses by dividing it into a convenient number
of equal intervals. Next, the mass of each section was calculated and divided in half,
and these halves concentrated at the two ends of the interval. The shaft between inter-
vals was assumed to possess stiffness, but not weight.

In the determination of shaft behavior there are four quantities to bg evaluated at
each cut; the deflection y, the slope ¢ = %, the bending moment M = EI C%—X, and the
dx

3
shear force V = EI 9—% It is necessary to find the relation between these quantities for
dx
adjacent intervals. Figure 11 shows the interval between the kth and the k+ 1st cut and
the quantities acting. The following equations are written for the interval of length £.:

Vk-l-l

Vk + Bck (yk + ek), 1b, (33)
My 17 M+ chk + 1 in-lb, (34)
Per1 TP Vi s T A My Tad, (=5
Vs 1=V L’chk + hCSk 1t fCMk, in. , (36)
where
Vk, k + 1 = shear force, 1b
e = eccentricity, in.
Yk, k+1 = deflection, in.
Bck = inertia force co:stant, lb/in.
Mk, k + ] = moment, in-lb.

£ = shaft length, in.

d)k’ k + 1 - slope, rad

f. = influence coefficient for a moment, 1/in-1b
q. = slope influence coefficient for a moment, 1/in-1b
h¢ = deflection influence coefficient for shear force, in. /1b

where the first two are the equilibrium equations of the interval subject to the inertia
force, or centrifugal force mg w? (vk + ek)at the chosen frequency w?. The last two
equations are deduced from geometric configurations.
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The coefficients of Equations (33) through (36) are defined in terms of the input
parameters as follows:

) 22
L D*N“P 7[/7-[ 2
= - — 1b/in.,
%c " T386.24 4 30>’ /in. , (37)
_ Ll .
b, = CN =, 1b/in. , (38)
4
1:%, n. 4; (39)
2
fc = _2;1, 1/1b, (40)
EC Q
q. = B’ 1/1b=-in. , (41)
zc3
h, =EE’ in. /1b, (42)
pzlﬁi<1)21wm (43)
€ 386.4 \ 30/ ' ’
ﬁck =a_- Q [/K + bcsf——1> -pc:l , Ib/in. (44)

where
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a_. = centrifugal force constant, 1b/in.

c
EC = shaft length between computer stations, in.
D = shaft diameter, in.

N = shaft speed, rpm

P = shaft density, 1b/in. >

b_. = damping constant, 1b/in.

C = support damping coefficient, lb-sec/in.

I = section moment of inertia, in. 4

f. = influence coefficient, 1/1b

E = modulus of elasticity, 1b/in. c

q. = slope influence coefficient for a moment, 1/1b-in.
hc = deflection influence coefficient for a shear force, in. /1b
P, = support weight constant, 1b/in.

W = weight of intermediate support bearing, 1lb

Sck = inertia force constant, 1b/in.

Q = index: Q =1 indicates presence of a support;

Q = 0 indicates no support at that station

K

intcrmediate support spring rate, 1b/in.

Equations (33) through (36) constitute a set of linear recursion relations among
the four r quantities Sy, Mg, Pk, Yk- The problem is to determine these quantities for
a fixed-end shaft; i. e. , subject to the boundary conditions that the deflection and slope

are equal to zero at both ends of the shaft. Expressing the boundary conditions mathe-
matically yields:

yk:¢k=yr=¢r=o. (45)

Digital-Computer Shaft-Deflection Program. The problem of determining the
deflection of a high-speed power-transmission shaft in fixed-end bearings is the deter-
mination of yyx from Equation (36). This problem becomes the solution of the four
r quantities from Equations (33) through (36) for the boundary given in Equation (45).
Battelle's Digital Computer Program Library contained an IBM 650 computer program
which calculated the dynamic deflection of shafts. This program was for a shaft with
one end fixed and the other end simply supported. Modification of this program to in-
clude fixed ends yielded the desired deflection information.
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The resultant 1BM 650 double-precision computer program calculates the deflec-
tion curve for a fixed-end shaft with damped, flexible intermediate supports. These
supports are located at a mass point, and a support may be located at each mass. A
restriction on the program is that the number of intervals or masses selected must be
larger than 3 and less than 50. Since it was found that the coefficients grew very large
in magnitude, equations were calculated starting from each end of the shaft and solved
near the middle of the shaft. A double-precision routine (utilizing 18 digits) was used to
decrease the effect of round-off error. This enabled the computer to calculate the
deflection curve up to approximately the thirteenth mode of vibration. Equation (44)
necessitates the use of complex algebra.

Shaft parameters substituted into the computer are the shaft diameter, length of
shaft interval, shaft speed, specific weight and modulus of elasticity of the shaft ma-
terial. lntermediate-support-bearing information required for the computation includes
the spring constant, the damping coefficient, and the weight of the support bearing.
Additional information required is the number of stations into which the shaft is divided,
and the station number where the shaft is broken for computational purposes. Another
item required as an input to the computer program is the initial deviation of the shaft
from the center of rotation, or mass eccentricity. The results obtained from the com-
puter program for the deflection of shafts are the shear force and moment at the ends
of the shaft, the force at the intermediate support bearing, and the deflection at each
station. 1f these values of deflection arc plotted along the length of the shaft, a shaft-

deflection curve results. Figure 12 shows the deflection curve calculated for a specific
set of conditions.

Initial computer calculations showed the importance of the mass eccentricity on
the calculation of shaft deflection. 1lf a constant mass eccentricity was assumed, it
would not excite the even mode shapes and the computer would give incorrect deflection
shapes. Substitution was made of an assumed parabolic mass eccentricity distribution
with a maximum of 0. 010 inch at one end. In order to correiate calculated shaft deflec-
tions and measured shaft deflections, it was necessary to use measured values of shaft

eccentricity. Some typical measured values of the shaft eccentricities are shown in
Appendix C.

The computer program for the deflection of high-speed power-transmission shafts
was utilized to determine the critical speed of the shaft. A particular critical speed
could be determined by performing various computer shaft-deflection calculations at
small intervals of speed on either side of the estimated critical speed. The amplitude
of a particular station was plotted versus the speed of rotation. Figure 13 shows such
a plot. The critical speed was determined to be the speed at which the amplitude of
shaft deflection was a maximum. Although the shaft-deflection computer program
allowed the critical speed to be determined from a series of runs, a separate critical-

speed computer program was prepared to do the job with a series of calculations in just
one run.

Digital- Computer Shaft-Critical-Speed Program. In preparing a program to de-
termine the shaft critical speed, extensive use was made of the computer program
previously described. This program determines a shaft speed in a given speed interval
by maximizing the values of shear force and moment at the fixed ends. The input infor-
mation concerning the shaft configuration is identical to that of the deflection program.
Additional input information consists of an initial shaft speed, a final shaft speed, and
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an increniental shaft speed. An indicator is also included which indicates which of the
four values is to be maximized.

Successful determination of the critical speed has been obtained by maximizing the
fixed-end moment at the last station. The output consists of the calculated values of
all of the four factors. When it is determined that the desired factor has been maxi-
mized, the computer will automatically stop calculating. The speed which produces the
maximum value of the complex moment is the critical speed.

Computer Shaft-Critical-Speed and
Deflection Results

Successful operation of the two computer programs described above has augmented
the experimental work considerably, and has been utilized to perform calculations to

substantiate the modeling theory. Table 2 presents a tabulation of computer results in
this research program.

Importance of Mass Eccentricity Distribution to Calculate Shaft Deflection. To
determine the suitability of the computer program in computing critical-speed shaft
deflections, Runs 1l and 2 in Table 2 were conducted with an undamped shaft vibrating
at its first and third critical speeds, respectively. A shaft unbalance or mass eccen-
tricity constant along the shaft was used as the forcing function to excite critical-speed
vibrations. Tbe shaft-deflection curves were as expected in these two runs; one loop
was pr2sent at the first critical, and three at the third. However, when shaft deflection
was computed at the second critical, there was no change in amplitude across the shaft.
Presuming that constant mass eccentricity would not excite the even numbered modes of
vibration, a parabolic eccentricity was tried.

Recalculation of the third critical speed, Run 3, with parabolic eccentricity
showed the program to function correctly at this speed. The amplitude was less than in
Run 2, as was the averaged value of mass eccentricity. Run 4 was conducted at the
second critical with the same eccentricity as in Run 3, and this time calculated the
correct two-loop shaft deflection.

From these tests we concluded the necessity of using a forcing function which

varies in value across the shaft length. All subsequent computer runs were made with
varied mass eccentricity distribution.

Further Validation of Computer Program. Numerous computer calculations were
performed for fixed-end shafts with three equally spaced rigid intermediate supports.
Critical speeds were first calculated by hand for particular vibration modes and then
used as a computer input. Calculated shaft deflections of sizable value showed the
correctness of the input speed, and shaft-deflection shape indicated the validity of the
compuler program. As explained in the section discussing prediction of critical speeds
and mode shapes of equally supported continuous beams, there are as many first-
vibration-mode critical speeds as there are span lengths between bearings. The com-
puted deflection curves were of the same shape as predicted.
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A number of computer calculations were made with a single damped intermediate
support. As before, the shaft-deflection curves were similar to those expected; in this
case to experimentally observed deflections. Shaft critical speeds were also quite

similar. However, difference in vibration amplitude was noted between computed and
experimental runs.

The amplitude variation in computed and experimental runs stems from the diffi-
culty in adjusting damping exactly, variations in shaft runout, and shaft moment absorb-
ing ability of the damper plate. In the computer these items are inputs and not subject
to variation. For these reasons the computer was used to obtain absolute proof of
modeling procedure validity.

Effect of Shaft Mass Eccentricity on Vibration Amplitude. Computer Runs 31, 23,
26, and 25 were made with identical input conditions with the exception of shaft mass
eccentricity. Table 3 shows the maximum shaft mass eccentricity and the vibration
amplitude. This calculated vibration amplitude was found to increase with increasing
mass eccentricity. Amplitude was not proportional to eccentricity because of different

eccentricity distribution along the shafts, but amplitude did increase with increasing
mass eccentricity.

TABLE 3. TABULATION OF COMPUTED VIBRATION AMPLITUDE
FOR VARIOUS VALUES OF SHAFT MASS ECCENTRICITY

Maximum
Computer Mass Eccentricity, Vibiaiion
Run in. Amplitude, in.
31 0.0079 0.0436
23 0.010 0. 047
26 0.0192 0.091
25 0. 0344 0.1072

Computed Modeling Procedure Tests. Since mass eccentricity affects vibration
amplitude it was decided to calculate the deflection of two dynamically modeled shafts
using the same distribution and maximum value of shaft mass eccentricity. Computer
Runs 35 and 36 refer to the dynamically similar model shafts. As noted in Table 2 the

shaft dimensions are quite apart from each other, not to mention the larger being of
aluminum and the smaller of steel.

Using the procedures found in the section discussing modeling, suppoit parameters
were adjusted to provide dynamically similar operation. Rotation speeds were also
scaled. Since the distribution and maximum value of shaft eccentricity were equal it was
predicted that amplitudes would be also. The computed amplitudes differed by less

than 2 per cent (0, 00l inch), proof enough of the validity of both the modeling procedure
and the computer program.
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Conclusions

The computer program has been shown to calculate shaft critical speeds correctly,
as well as correct shaft-deflection curves. It is necessary to use a forcing function or
shaft mass eccentricity which varies with respect to shaft length, however. Otherwise
the even-numbered vibration modes cannot be computed.

The two computer runs of dynamically similar shafts have shown both the modeling
procedure and the computer program to be correct in all respects.

High-Speed Shafting Design by Electrical Analogy

Conventional methods of analysis of high-speed shaft behavior have been used with
considerable success in the digital-computer analyses conducted throughout this re-
search program. Although the conventional analysis procedures permitted accurate
calculation of critical speeds and shaft deflections, they are somewhat cumbersome as
aids to high-speed shafting design. An analytical approach to high-speed shafting design
was therefore sought which would provide more insight into the manner in which shaft

vibration is related to the dynamic parameters of the shaft and its intermediate support
bearings.

The possibility that an analogy might cxist between high-frequency electrical trans-
mission lines and high-speed shafts lead us to perform a detailed study of the similar-
ities between the two types of problems. A particularly attractive feature of such an
electrical analogy is the fact that exhaustive investigation and analysis of electrical

transmission lines has developed extensive technology and analysis techniques for the
solution of the electrical problems.

As a result of this work an analogy has been developed between high-speed shafting
and high-frequency electrical transmission lines. As this analogy was developed late
in the Phase I research program it must be emphasized that exhaustive checks and veri-
fications are not yet completed. The extreme promise of the technique, which has re-
sulted in the successful high-speed operation of an experimental shaft, justifies further
detailed study during the second phase of the research program.

Theoretical Verification of Transmission- Line
Analogy

The analogy between the bending vibrations of high-speed shafting and the standing
waves in an electrical transmission line is valid if the displacements of the shaft are
strictly sinusoidal functions of position along the shaft. This is shown by writing the
differential equation for bending vibrations in the form

2 2 2
g1 2% (9% >+E§_xa -0, (46)
dx¢ \ dx? g oté
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where

A = cross-sectional area, in. 2

E = modulus of elasticity, 1b/in. 2

I = section moment of inertia, in. 4

P = density, 1b/in.3

g = acceleration of gravity, 386 in, /sec?
y = deflection, in.

x = distance along the shaft, in.

t = time, sec.

Now, if 3%y/dx? = -ka, we obtain
2 2
Elk2 3y - PA 3% s (47)
dx¢ g otl
where

k = constant, 1/in.

which is the ordinary wave equation with a phase velocily equal to (Elkzg/PA)l/Z. The
condition 32y/3x2 = -k2y implies that the bending moment is everywhere proportional
to the displacement, which results in y = B} sin kx + B cos kx. The hyperbolic func-
tion terms vanish in the general solution of the bending wave equation,

= B sin kx + B cos kx + B3 sinh kx + B4 cosh kx, (48)
y 1 2 3 4

where
Bl, 2,3,4°7 constants.

The transmission-line analogy is a useful one because the shape of the bending
shaft is approximately sinusoidal for all modes of vibration of interest, except near the
ends of the shaft, where the condition 32y/dx2 = -kZy is not valid for either simply
supported or fixed-end conditions. Consequently, the analogous transmission-line
computations are not carried out to the ends of the shaft. A portion of the shaft near

each fixed end is replaced by the equivalent impedance of a short cantilever beam in the
manner described in the following section of this report.

Electrical Analogy of High-Speed Shafting

The general arrangement of the high-speed shafts and their supports studied in this
program is shown in Figure 14A. As indicated in the figure the ends of the shafts were
rigidly supported in the spindles of the testing machine. For the purposes of developing
a suitable analogy this shaft configuration was considered equivalent to the configuration
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shown in Figure 14B, where the rigidly clamped shaft ends are replaced by a spring-
mass combination. To make this change valid, the following reasoning was employed:
for each critical speed of the fixed-ended shait a shorter shaft having simply supported
ends can be found which has the same critical speed. The fixed-ended shaft is therefore
considered equivalent to a simply supported shaft joined at each end to a short cantilever
beam. The springs and masses shown in Figure 14B attached to the ends of the shaft

are equivalent to the effective masses and spring rates of the short cantilevered ends of
the shaft in Figure 14A.

The mechanical system shown in Figure 14B is considered equivalent to the
electrical system shown in Figure 14C for the purposes of the transmission-line analegy.
In Figure 14C the spring-mass combination representing the fixed ends of the shait has
been replaced by a capacitance and inductance combination. At an equivalent distance
in wave lengths down the transmission line from the end, a combination of capacitance,
resistance, and inductance is placed in series with the line to represent the dynamic
characteristics of the shaft support bearing. Each additional shaft support bearing is
replaced by its analogous resistance, capacitance, and inductance at the correct dis—
tance in wavelengths from the end of the transmission line. It should be noted here
that for purposes of wavelength measurements along the line, the end of the mechanical
shaft is considered to lie at the juncture between the equivalent simple beam and the
equivalent cantilever as shown in Figure 14A.

For efficient energy transfer in high-frequency power-transmission lines the load
on the transmission line is designed to appear purely resistive at the operating fre-
quency, and to have a resistance value equal to the characteristic impedance of the
transmission line. In the case of the high-speed shaft the loac to which vibratory
energy is to be delivered is the damper located at the intermediate support bearing.

One, two, or more intermediate support bearings may be used. Figure 14 shows two
bearings for purposes of illustration only. The dar ~rs at these two bearings represent
the loads on the shaft insofar as vibratory energy is concerned. The intention of the
design procedure is to select proper values and locations for the intermediate supports

to match the impedance of the transmission line, or in this case the shaft, at the desired
operating frequencies.

Relationships Between Mechanical and
Electrical Quantities

The first critical specd of a simply supported beam is given by the expression

Ve
f=1.57 [%&4] , (49)
where
f = critical speed, cycles or rev/sec

E = modulus of elasticity, psi

1 = section moment of inertia, in. %

g = acceleration due to gravity, 386 in. /sec?
w = unit weight of beam, 1lb/in.

. = becam span length, in.
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The moment of inertia of a tubular or solid shaft is given by the expression

4 4
I=71’$D 6—d !’ (50)
4

where
D = outside diameter, in.
d = inside diameter, in.
The weight per inch of a tubular or solid shaft is given by the expression
w = ﬂDZ;‘}le P, (51)
where

P = density of shaft material, 1b/in. 3

Substituting (50) and (51) in (49) gives

1
f=7.76[E@2+d2)] Ve
22 P ’

(52)

For steel shafting, where E = 3 x
reduces to

07 psi and P = 0. 283 1b/in. 3, Equation (52)

y
_ 80,000 (D% + ¢4) 7

f 2 (53)
For solid steel shafting, Equation (53) becomes
f=802000D' (54)

92

In thi case ofa simply supported shaft, the length between supports or between
nodes of a vibrating shaft is equal to one-half a wavelength. That is,

L=%, (55)
2
where

A = the vibration wavelength, in.

Substituting Equation (55) in Equation (54) gives the following:

¢ = 32;)2: 000 D (56)

Equation (56) may be rewritten in the following form for convenient use later.

r = 263D ) (57)
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In the case of a lossless, high-frequency electrical transmission line, the velocity
of propagation of an electrical impulse is equal to the velocity of light. It is called the
velocity of phase propagation, and is independent of frequency. In the case of a lossless
transmission line [Ref. (3)],

_ 1
vE—"""17, (58)
(LeCe)

where
v = velocity of phase propagation
Le = inductance per unit length of line
Ce = capacitance per unit length of line

Also, for the transmission line
A= X 5
I (59)
Substituting equation (58) in equation (59) gives

re—— (60)
f(LeCg) 7*

Equation (60) for the wavelength on the electrical transmission line corresponds
to Equation (57) for the wavelength on the high-speed shaft.

Mechanical equivalents of inductance and capacitance per unit length of line are
needed for the development of the analogy. Mass per unit length of shaft is clearly
analogous to inductance per unit length of transmission line.

L.=m (61)

2 _ 32

u 4g ’
where
m, = mass of shaft per unit length, b-sec?/in. 2
For a solid steel shaft
m_ = 5.76 x 1074D2. (63)

Capacitance per unit length of the transmission line is analogous to compliance
per unit length in the mechanical shaft.

1
Ce ==. 64
e =g (64)
Therefore, from Equations (61) and (64),
m
u
LeCe = K (65)
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From Equations (57) and (60),

\ - 565 (DN)%_ 1
f f(L,C,) ¥
or
320,000 Df = —L1 (66)
Lece

Substituting (63) and (65) in (66) gives
K = 184 D31 . (67)

A basic parameter of the electrical transmission line is the characteristic imped-
ance of the line. This is the impedance that would be offered by a transmission line of
infinite length. A line of any finite length, connected at one end of a resistance equal to
the line's characteristic impedance, would appear at the other end to present the same
impedance as an infinitely long line. An electrical impulse introduced at one end of the
line would be completely dissipated in the resistive load at the other end. Thus, no
reflection of energy would occur from the end of the line, and there would be no standing
waves of voltage on the line. In such a case, the transmission line is said to be
"matched' to the load. The voltage standing wave ratio, or ratio of maximum to mini~
mum voltages along the line, equals one in the matched case, as there are no standing
waves, and equal voltages would be measured at all points.

The characteristic impedance of the transmission line is given by the following

expression [Ref. (3)]:
L 1
ZS :( -c_:£> /2 g (68)
e

Zg = characteristic line impedance.

where

Substituting (61) and (64) in (68) gives
1
Zg = (m, K)/z . (69)

Substituting (63) and (67) in (69) gives the characteristic impedance of a solid steel
shaft as

z, = 0.325 p2(Df) % . (70)

A limited time was available at the end of Phase I for experimental verification of
this analogy. Nevertheless, several tests were completed, and highly satisfactory high-
speed operation was obtained. During the course of this experimental work it was deter-
mined that adjustment of the constant term in Equation (70) from 0. 325 to 1. 0 gave
apparently superior results in actual high-speed shaft tests. This fact was actually
discovered by accident, as a mistake of this magnitude was made in the original develop-
ment of the analogy relationships. When the dampers of the test machine were read-
justed to 'correct' the mistake, however, smoothness of shaft operation suffered. Pend-

ing further experimentation, therefore, the following expression for characteristic shaft
impedance will be used:

Z = D¥(Df)%. (71)
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The Smith Chart as a Design Tool

A valuable aid to electrical engineers in the study of high-frequency electrical
transmission lines is the Smith chart [Ref. (3})] shown in Figure 15. The chart is a
complex plot of load impedance on a transmission line as seen from various points
along the line. So that a single plot may be used for studies of transmission lines having
various characteristic impedances, all impedances are normalized, that is, divided by
the characteristic line impedance. A resistive load equal in magnitude to the impedance
of the line would therefore appear at the very center of the chart, at the point marked
1.0. A resistive load equal in magnitude to three times the characteristic imnpedance
of the line would be plotted along the straight horizontal center line of the chart at the
point designated 3. 0. Purely reactive loads, that is, loads containing no resistive com-
ponent, are plotted around the outer perimeter of the chart. Loads composed of both
resistance and reactance are plotted at the intersection on the chart of lines representing
the correct resistive and reactive magnitudes.

For loads that are not perfectly matched to the line impedance, that is, not purely
resistive and equal to the characteristic line impedance, the load offers different
characteristics when the line length is changed. Point A on Figure 15 is shown to
illustrate this. The normalized impedance of Point A is 0.3 + j0.5. This means that
the resistance component of the load impedance is equal to 0. 3 times the characteristic
line impedance, while the inductive reactance of the load is equal to 0. 5 times the
characteristic line impedance. If the reactive component had been negative, that is,

capacitive, the load would have been represented by Point B, having a value of 0.3 -
j0. 5.

The radius drawn from the center of the chart through Point A crosses the outer
wavelength reference circle of the chart at Point C, equal to 0. 078 wavelength. This
particular number of wavelengths has no significance in itself but is us€ful as a refer-
ence from which other wavelength measurements may be made. If measurements are
made of load impedance from a location down the line from the load toward the genera-
tor, the circle drawn through Point A and having its center at the chart center is the
locus of all measured values of load impedance. For example, if a measurement of
load impedance were made from a point 0. 172 wavelength toward the generator from the
load, the measured impedance would be represented by Point D. The original load
impedance was located at 0, 078 wavelength. Adding 0. 172 wavelength gives 0. 250 wave-
length. When this position is located along the outer circle of the Smith chart, and a
radius drawn to that point from the center of the chart, the radius crosses the circle
representing the locus of load impedance at Point D. Thus, from this location, the load
would appear to be a pure resistance equal in magnitude to 4, 2 times the characteristic
line impedance. At a location 1/4 wavelength from the load at Point A the apparent load

impedance would be represented by Point E where the normalized impedance is 0. 88 -
jl. 48.

Another important piece of information obtained from the Smith chart is the voltage
standing wave ratio, abbreviated VSWR. This quantity, often called simply the standing
wave ratio, is given by the intersection of the impedance locus with the right-hand sec-
tion of the Smith chart center line. In the example given, therefore, the standing wave
ratio would be 4. 2 as indicated at Point D.
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HIGH-FREQUENCY ELECTRICAL TRANSMISSION LINES

Smith chart published with permission of P. H. Smith and
Kay Electric Co.
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Example of High-Speed Shafting Design
Procedure Using Smith Chart

As a preliminary verification of the transmission-line analogy of high-speed
shafting, it was decided to design and test a damped support system., Examination of
15 combinations of variables already tested experimentally proved to be enlightening.
Studying these cases with the use of the electrical analogy and the Smith chart showed
that high-standing wave ratios were predicted, corresponding to large vibration
amplitudes. It became apparent that standing wave ratio is a measure of the severity
of shaft vibration in the examples studied. It was also apparent that the high standing
wave ratios resulted primarily from the high inductive reactance (high mass) of the
support bearing relative to the shaft. For this reason it was decided that the largest
shaft that could be accommodated by the high-speed testing machine would be used, so
that the support bearings would appear less massive relative tp the shaft.

The shaft selected was of solid steel, 1/2 inch in diameter and 138 inches long.
An arbitrary decision was made to design a damped support bearing for correct imped-
ance matching at the sixth critical speed, and to determine the resulting standing wave
ratios at other critical speeds. A different starting point for design could have been
chosen, but for purposes of a first demonstration this choice was considered suitable.

It was decided that behavior of the shaft would be examined at the first nine
critical speeds. Voltage standing wave ratio as determined from the Smith chart was
selected as the parameter to be minimized for smooth operation of the high-speed
shaft.

A large number of rather elementary calculations were involved in carrying out
the design of the damped support bearings. The essential results of these calculations
are given in Table 4. The first 11 items in the table are basic parameters of the 138-
inch-long, 1/2-inch-diameter, solid steel shaft.

Line 1 in Table 4 lists the critical speeds of the shaft. These critical speeds were
tcd from the following equation:

3.07 (1. 25n + 0. 637)2D x 10°

cpm = (8)
LZ
where
n = order of critical speed
D = shaft diameter, in.
L = shaft length, in.

cpm = critical speed, cycles per minute.
Line 2 lists the length of a simple beam which would have the same speed for its

critical speed as does a 138-inch-long beam having rigidly fixed ends. These simple
beam lengths were calculated from the expression

1
L=n<8_°,?_00_9>/2, (72)
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